NVIDIA Parker SoC offers Denver 2 cores and 256-core Pascal GPU (will be inside Volvo/Uber cars)

Posted on Tuesday, August 23 2016 @ 14:48 CEST by Thomas De Maesschalck
At the Hot Chips 2016 symposium, NVIDIA CEO Jen-Hsun Huang showcased Parker, the company's new SoC for the self-driving car market. The NVIDIA Drive PX2 board offers two Parker SoCs, resulting in a total computing power of 8 teraflops (FP32).

Parker is made on a 16nm FinFET process and features two Denver 2.0 64-bit cores designed by NVIDIA, four ARM Cortex-A57 64-bit cores, and a 256-core Pascal-based GPU. Here is a bit more information from the NVIDIA blog:
Forging a Future for Automotive
Parker delivers class-leading performance and energy efficiency, while supporting features important to the automotive market such as deep learning, hardware-level virtualization for tighter design integration, a hardware-based safety engine for reliable fault detection and error processing, and feature-rich IO ports for automotive integration.

Built around NVIDIA’s highest performing and most power-efficient Pascal GPU architecture and the next generation of NVIDIA’s revolutionary Denver CPU architecture, Parker delivers up to 1.5 teraflops(1) of performance for deep learning-based self-driving AI cockpit systems.

Need for Speed
Parker delivers 50 to 100 percent higher multi-core CPU performance than other mobile processors(2). This is thanks to its CPU architecture consisting of two next-generation 64-bit Denver CPU cores (Denver 2.0) paired with four 64-bit ARM Cortex A57 CPUs. These all work together in a fully coherent heterogeneous multi-processor configuration.

The Denver 2.0 CPU is a seven-way superscalar processor supporting the ARM v8 instruction set and implements an improved dynamic code optimization algorithm and additional low-power retention states for better energy efficiency. The two Denver cores and the Cortex A57 CPU complex are interconnected through a proprietary coherent interconnect fabric.

A new 256-core Pascal GPU in Parker delivers the performance needed to run advanced deep learning inference algorithms for self-driving capabilities. And it offers the raw graphics performance and features to power multiple high-resolution displays, such as cockpit instrument displays and in-vehicle infotainment panels.

Scalable Architecture
Working in concert with Pascal-based supercomputers in the cloud, Parker-based self-driving cars can be continually updated with newer algorithms and information to improve self-driving accuracy and safety.

Parker includes hardware-enabled virtualization that supports up to eight virtual machines. Virtualization enables carmakers to use a single Parker-based DRIVE PX 2 system to concurrently host multiple systems, such as in-vehicle infotainment systems, digital instrument clusters and driver assistance systems.

Parker is also a scalable architecture. Automakers can use a single unit for highly efficient systems. Or they can integrate it into more complex designs, such as NVIDIA DRIVE PX 2, which employs two Parker chips along with two discrete Pascal GPU cores.

In fact, DRIVE PX 2 delivers an unprecedented 24 trillion deep learning operations per second to run the most complex deep learning-based inference algorithms. Such systems deliver the supercomputer level of performance that self-driving cars need to safely navigate through all kinds of driving environments.

Parker Specifications
To address the needs of the automotive market, Parker includes features such as a dual-CAN (controller area network) interface to connect to the numerous electronic control units in the modern car, and Gigabit Ethernet to transport audio and video streams. Compliance with ISO 26262 is achieved through a number of safety features implemented in hardware, such as a safety engine that includes a dedicated dual-lockstep processor for reliable fault detection and processing.

Parker is architected to support both decode and encode of video streams up to 4K resolution at 60 frames per second. This will enable automakers to use higher resolution in-vehicle cameras for accurate object detection, and 4K display panels to enhance in-vehicle entertainment experiences.

Expect to see more details on Parker’s architecture and capabilities as we accelerate toward making the self-driving car a reality.
NVIDIA Drive PX2

NVIDIA Parker

NVIDIA says over 80 car makers, tier 1 suppliers and university research centers are using the Drive PX2 to develop autonomous vehicle technology. One big design win was announced as well, NVIDIA shared that Volvo will be using the Drive PX2 for XC90 SUV road tests next year. Volvo and Uber invested $300 million the creation of self-driving cars, and the latter plans to start testing self-driving cars in downtown Pittsburgh sometime later this month. Clients will be able to summon self-driving cars, but the car's operation will still be monitored by humans in the driver's seat.

Furthermore, there are also rumors that Nintendo's upcoming NX may use the Parker SoC.


About the Author

Thomas De Maesschalck

Thomas has been messing with computer since early childhood and firmly believes the Internet is the best thing since sliced bread. Enjoys playing with new tech, is fascinated by science, and passionate about financial markets. When not behind a computer, he can be found with running shoes on or lifting heavy weights in the weight room.



Loading Comments