DV Hardware bringing you the hottest news about processors, graphics cards, Intel, AMD, NVIDIA, hardware and technology!

   Home | News submit | News Archives | Reviews | Articles | Howto's | Advertise
 
DarkVision Hardware - Daily tech news
December 3, 2016 
Main Menu
Home
Info
News archives
Articles
Howto
Reviews
 

Who's Online
There are currently 67 people online.

 

Latest Reviews
Zowie P-TF Rough mousepad
Zowie FK mouse
BitFenix Ronin case
Ozone Rage ST headset
Lamptron FC-10 SE fan controller
ZOWIE G-TF Rough mousepad
ROCCAT Isku FX gaming keyboard
Prolimatech Magnetic Pin
 

Follow us
RSS
 

Scientists use viruses to build nanomaterials

Posted on Sunday, October 21 2007 @ 06:45:16 CEST by


Scientists are working on a way to assemble nanomaterials with the help of viruses:
Angela Belcher leans in to watch as a machine presses down slowly on the plunger of a syringe, injecting a billion harmless viruses into a clear liquid. Instead of diffusing into the solution as they escape the needle, the viruses cling together, forming a wispy white fiber that's several centimeters long and about as strong as a strand of nylon. A gradu­ate student, Chung-Yi Chiang, fishes it out with a pair of tweezers. Then he holds it up to an ultra­violet light, and the fiber begins to glow bright red.

In producing this novel fiber, the researchers have demonstrated a completely new way of making nanomaterials, one that uses viruses as microscopic building blocks. Belcher, a professor of materials science and biological engineering at MIT, says the approach has two main advantages. First, in high concentrations the viruses tend to organize themselves, lining up side by side to form an orderly pattern. Second, the viruses can be genetically engineered to bind to and organize inorganic materials such as those used in battery electrodes, transistors, and solar cells. The programmed viruses coat themselves with the materials and then, by aligning with other viruses, assemble into crystalline structures useful for making high-­performance devices.

But the approach is not just an alternative way to make familiar devices; it could also be the impetus for developing entirely new ones. In past work, Belcher has created virus-based thin films for rechargeable batteries. Now that she can spin viruses into fibers, she envisions threadlike batteries and other electronic devices that can be woven directly into clothing. "It's not really analogous to anything that's done now," she says. "It's about giving totally new kinds of functionalities to fibers."
Learn more at Technology Review.


 



 

DV Hardware - Privacy statement
All logos and trademarks are property of their respective owner.
The comments are property of their posters, all the rest © 2002-2016 DM Media Group bvba