Scientists claim observing dark energy has dramatic consequences for universe

Posted on Sunday, November 25 2007 @ 17:55 CET by Thomas De Maesschalck
Lawrence Krauss and James Dent, a pair of physicists at the Case Western Reserve University in Cleveland, Ohio and Vanderbilt University, Nashville, claim we may have accidentally pushed the universe closer to its death merely be observing dark energy. Krauss suggests that by making this observation in 1998 we may have caused the universe to revert to a state similar in its history, when it was more likely to end.
The team came to this depressing conclusion by calculating how the energy state of our universe - a kind of summation of all its particles and all their energies - has evolved since the big bang of creation 13.7 billion years ago.

Some mathematical theories suggest that, in the very beginning, there was a void that possessed energy but was devoid of substance. Then the void changed, converting energy into the hot matter of the big bang. But the team suggests that the void did not convert as much energy to matter as it could, retaining some, in the form of what we now call dark energy, which now accelerates the expansion of the cosmos.

Like the decay of a radioactive atom, such shifts in energy state happen at random and it is possible that this could trigger a new big bang. The good news is that theory suggests that the universe should remain in its current state. advertisement

But the bad is that quantum theory says that whenever we observe or measure something, we could stop it decaying due what is what is called the "quantum Zeno effect," which suggests that if an "observer" makes repeated, quick observations of a microscopic object undergoing change, the object can stop changing - just as a watched kettle never boils.

In this case however, it turns out that quantum mechanics implies that if an unstable system has survived for far longer than the average such system should, then the probability that it will continue to survive decreases more slowly than it otherwise would. By resetting the clock, the survival probability would now once again fall exponentially.

"The intriguing question is this," Prof Krauss told the Telegraph. "If we attempt to apply quantum mechanics to the universe as a whole, and if our present state is unstable, then what sets the clock that governs decay? Once we determine our current state by observations, have we reset the clock? If so, as incredible as it may seem, our detection of dark energy may have reduced the life expectancy of our universe."
More info at The Telegraph.


About the Author

Thomas De Maesschalck

Thomas has been messing with computer since early childhood and firmly believes the Internet is the best thing since sliced bread. Enjoys playing with new tech, is fascinated by science, and passionate about financial markets. When not behind a computer, he can be found with running shoes on or lifting heavy weights in the weight room.



Loading Comments