300 Gigawatt laser can simulate black hole accretion disk

Posted on Wednesday, October 21 2009 @ 10:13 CEST by Thomas De Maesschalck
A team of international researchers have figured out how to use a 300 gigawatt laser to simulate the environment near a black hole:
Black holes are famous for having a gravitational field that is so potent that light cannot escape its pull. But that same gravitational pull causes nearby matter to reach energies that results in a prodigious amount of radiation, from regular light up to X-rays and beyond. Researchers have attempted to model the behavior of matter as it gets drawn into accretion disks near a black hole in order to understand this radiation, but the conditions in these areas are difficult to reproduce on Earth. Now, a consortium of researchers from China, Japan, and Korea have figured out how to use a 300 GigaWatt laser to reproduce conditions near the accretion disk, and have successfully reproduced the spectrum observed near both black holes and neutron stars.
More info at ARS Technica.


About the Author

Thomas De Maesschalck

Thomas has been messing with computer since early childhood and firmly believes the Internet is the best thing since sliced bread. Enjoys playing with new tech, is fascinated by science, and passionate about financial markets. When not behind a computer, he can be found with running shoes on or lifting heavy weights in the weight room.



Loading Comments