Microsoft toying with deblurring technology for cameras

Posted on Monday, August 02 2010 @ 21:50 CEST by Thomas De Maesschalck
Microsoft researchers have demonstrated a new deblurring technology that uses inertial measurement sensors and an “aided blind-deconvolution” algorithm to automatically deblur images with spatially-varying blurs.
We present a deblurring algorithm that uses a hardware attachment coupled with a natural image prior to deblur images from consumer cameras. Our approach uses a combination of inexpensive gyroscopes and accelerometers in an energy optimization framework to estimate a blur function from the camera’s acceleration and angular velocity during an exposure. We solve for the camera motion at a high sampling rate during an exposure and infer the latent image using a joint optimization. Our method is completely automatic, handles per-pixel, spatially-varying blur, and out-performs the current leading image-based methods. Our experiments show that it handles large kernels – up to at least 100 pixels, with a typical size of 30 pixels. We also present a method to perform “ground-truth” measurements of camera motion blur. We use this method to validate our hardware and deconvolution approach. To the best of our knowledge, this is the first work that uses 6 DOF inertial sensors for dense, per-pixel spatially-varying image deblurring and the first work to gather dense ground-truth measurements for camera-shake blur.
Here's a sample of the capabilities of the technology, you can check out some higher-res results over here.





About the Author

Thomas De Maesschalck

Thomas has been messing with computer since early childhood and firmly believes the Internet is the best thing since sliced bread. Enjoys playing with new tech, is fascinated by science, and passionate about financial markets. When not behind a computer, he can be found with running shoes on or lifting heavy weights in the weight room.



Loading Comments