DV Hardware - bringing you the hottest news about processors, graphics cards, Intel, AMD, NVIDIA, hardware and technology!

   Home | News submit | News Archives | Reviews | Articles | Howto's | Advertise
 
DarkVision Hardware - Daily tech news
October 18, 2018 
Main Menu
Home
Info
News archives
Articles
Howto
Reviews
 

Who's Online
There are currently 182 people online.

 

Latest Reviews
Arctic BioniX F120 and F140 fans
Jaybird Freedom 2 wireless sport headphones
Ewin Racing Champion gaming chair
Zowie P-TF Rough mousepad
Zowie FK mouse
BitFenix Ronin case
Ozone Rage ST headset
Lamptron FC-10 SE fan controller
 

Follow us
RSS
 

Graphene could be the solution for electromigration issues on sub-7nm nodes

Posted on Tuesday, February 21 2017 @ 15:21:39 CET by


Over the past decade or so we've heard a lot of potential applications for graphene and now we hear this nanomaterial could be the solution for electromigration, a problem that's becoming increasingly grave in the computer industry.

The first chips with copper interconnects were made in 2000 and featured a total of 1 kilometer of wiring per square centimeter. Ruth Brain, Intel director of interconnect technology and integration, points out that today's 14nm processors contain over 10 kilometers of copper wiring in the same square centimeter. Interconnects have shrunk dramatically but at the same time the current densities increased by 20 times, a lethal combination for the copper wires.

Copper interconnects are now so tiny that current can cause a break by knocking atoms out of place. In today's processors, the copper interconnects are deposited within trenches lined with 2nm thick walls of tantalum nitride to prevent the copper from escaping.

The current technique will likely be suitable for the coming 10nm and 7nm nodes, but future process technology will require an alternative that's a lot smaller. Researchers from Stanford University discovered that graphene could be the solution here:
Today’s solution is to deposit copper interconnects within trenches lined with 2-nanometer-thick walls of tantalum nitride. This lining keeps the copper from escaping, and Wong says copper will probably endure through the coming 10- and 7-nm nodes. As device features keep shrinking, though, 2-nm walls will be far too thick, says [Stanford electrical engineer H.-S. Philip] Wong. Researchers are investigating other linings that may prevent electromigration, including ­ruthenium and magnesium, but at 0.3 nm, he says, graphene is thinner than anything else.

The semiconductor industry avoids integrating new materials as long as possible, but Wong says there isn’t much choice in this situation: If copper’s life can’t be extended, it will have to be replaced with a new material anyway, such as cobalt.
copper electromigration

Full details at IEEE Spectrum.



 



 

DV Hardware - Privacy statement
All logos and trademarks are property of their respective owner.
The comments are property of their posters, all the rest © 2002-2018 DM Media Group bvba