DV Hardware bringing you the hottest news about processors, graphics cards, Intel, AMD, NVIDIA, hardware and technology!

   Home | News submit | News Archives | Reviews | Articles | Howto's | Advertise
DarkVision Hardware - Daily tech news
October 21, 2016 
Main Menu
News archives

Who's Online
There are currently 105 people online.


Latest Reviews
Zowie P-TF Rough mousepad
Zowie FK mouse
BitFenix Ronin case
Ozone Rage ST headset
Lamptron FC-10 SE fan controller
ZOWIE G-TF Rough mousepad
ROCCAT Isku FX gaming keyboard
Prolimatech Magnetic Pin

Follow us

SGI Project Molecule - an Intel Atom based supercomputer

Posted on Monday, November 24 2008 @ 22:02:29 CET by

SGI was showing off a new supercomputer project at SC08 last week, it's codenamed Project Molecule and the special thing about it is that it uses the Intel Atom N330 processor. The aim of Project Molecule is to create a supercomputer with ultra high-density, low power consumption and low cost using the ultimate commodity processor that can be easily programmed. SGI says a 3U-high rack can house more than 90 blocks with two dual-core Intel Atom 1.6GHz processor in each block, good for a total of 360 cores. The total power consumption of this system is below 2kW. More info at Tech-On!

The Register has some more info about the performance of Project Molecule:
The concept machine at the SC08 show was a 3U rack that contained 180 of the Atom boards, for a total of 360 cores. These boards would present 720 virtual threads to a clustered application, and have 720 GB of main memory (using 512 MB DDR2 DIMMs mounted on the board) and a total of 720 GB/sec of memory bandwidth. The important thing to realize, explained Brown, is that if the interconnect was architected correctly, the entire memory inside the chassis could be searched in one second. That memory bandwidth, Brown explained, was up to 15 TB/sec per rack, or about 20 times that of a single-rack cluster these days. This setup would be good for applications where cache memory or out-of-order execution don't help, but massive amounts of threads do help. (Search, computational fluid dynamics, seismic processing, stochastic modeling, and others were mentioned).

The other advantages that the Molecule system might have are low energy use and low cost. The aggregate memory bandwidth in a rack of these machines (that's 10,080 cores with 9.8 TB of memory) would deliver about 7 times the GB per second per watt of a rack of x64 servers in a cluster today, according to Brown. On applications where threads rule, the Molecule would do about 7 times the performance per watt of x64 servers, and on SPEC-style floating point tests, it might even deliver twice the performance per watt. On average, SGI is saying performance per watt should be around 3.5 times that of a rack of x64 servers.



DV Hardware - Privacy statement
All logos and trademarks are property of their respective owner.
The comments are property of their posters, all the rest © 2002-2016 DM Media Group bvba