DV Hardware bringing you the hottest news about processors, graphics cards, Intel, AMD, NVIDIA, hardware and technology!

   Home | News submit | News Archives | Reviews | Articles | Howto's | Advertise
DarkVision Hardware - Daily tech news
October 25, 2016 
Main Menu
News archives

Who's Online
There are currently 128 people online.


Latest Reviews
Zowie P-TF Rough mousepad
Zowie FK mouse
BitFenix Ronin case
Ozone Rage ST headset
Lamptron FC-10 SE fan controller
ZOWIE G-TF Rough mousepad
ROCCAT Isku FX gaming keyboard
Prolimatech Magnetic Pin

Follow us

NASA develops chips that still work at 600°C

Posted on Monday, September 17 2007 @ 07:28:57 CEST by

NASA researchers have created new Silicon Carbide (SiC) based chips that can operate at temperatures of up to 600°C:
Silicon Carbide (SiC) chips can operate in 600 degrees Celsius or 1,112 degrees Fahrenheit where conventional silicon-based electronics -- limited to about 350 C -- would fail.In the past, integrated circuit chips could not withstand more than a few hours of high temperatures before degrading or failing. This chip exceeded 1,700 hours of continuous operation at 500 degrees Celsius - a breakthrough that represents a 100-fold increase in what has previously been achieved, NASA said.

Typically as chips become more dense, they are constrained by their own heat, with modern processors using up to 100 watts per square centimeter. That is already pushing the upper limit of current cooling technology, which relies on fans to blow air over heat sinks.

The new silicon carbide differential amplifier integrated circuit chip may provide benefits to anything requiring long-lasting electronic circuits in very hot environments such as jets, spacecraft and industrial machinery.

In particular, NASA said SiC applications will include energy storage, renewable energy, nuclear power, electrical drives. The use of the high temperature packaging and operation of SiC power modules for its power electronics equipment will bring about the benefits of increase in power density, reduction in heat sink requirements (thus smaller size and mass), and higher frequency operation that also results in lower mass for the filters and transformers.
More info at NetworkWorld.



DV Hardware - Privacy statement
All logos and trademarks are property of their respective owner.
The comments are property of their posters, all the rest © 2002-2016 DM Media Group bvba