Intel developing turbo-charging transistors

Posted on Saturday, December 12 2009 @ 0:01 CET by Thomas De Maesschalck
Intel send out a press release that it has developed turbo-charging transistors:
Intel has reached a milestone in its quest to make transistors switch ever faster while using less energy, by integrating a high-k gate with a compound semiconductor transistor. Details were presented this week at the International Electron Devices Meeting (IEDM). Intel has been researching the possibility of replacing the silicon channel of the transistor by a compound semiconductor material such as indium gallium arsenide (InGaAs). Up until recently, such transistors used a Schottky gate with no gate dielectric, and were subjected to large gate leakage. Intel has now identified and integrated a high-k gate dielectric to reduce leakage with these so-called QWFETs (quantum well field effect transistors). The prototype device was fabricated on a silicon wafer substrate, pointing towards eventual process synergy with the existing silicon infrastructure. By using a high-k dielectric, gate leakage for short channel devices was reduced by 1000x compared with a Schottky gate, while the electrical oxide thickness was reduced by 33%, leading to higher switching speeds, which in turn leads to improved chip performance. More details are available in a blog by Mike Mayberry.


About the Author

Thomas De Maesschalck

Thomas has been messing with computer since early childhood and firmly believes the Internet is the best thing since sliced bread. Enjoys playing with new tech, is fascinated by science, and passionate about financial markets. When not behind a computer, he can be found with running shoes on or lifting heavy weights in the weight room.



Loading Comments